Find a Clinical Trial

View a list of clinical trials that Central Vermont Medical Center's cancer program currently participates in.

Have a Question?

For more information please call the CVMC Clinical Trial Office.

 802-225-5419

Central Vermont Medical Center participates in clinical trials as a partner of the University of Vermont Cancer Center. Clinical trials connect patients with cutting-edge treatment options while also participating in the process to look for better ways to prevent, diagnose, or treat cancer. Many of the “standard treatments” that patients receive today were developed based on the results of previous clinical trials.

Every clinical trial has specific safety criteria that define which patients can participate in the trial. Your doctor, nurses and staff make up the clinical research team that collaboratively focus on offering the very best care for you and your family. Consider joining a clinical trial today, you could help change the future of medicine.

Find a Clinical Trial

Brain Cancer Clinical Trials

Brain: Treatment Trials

A071401 – Vismodegib, FAK Inhibitor GSK2256098, Capivasertib, and Abemaciclib in Treating Patients with Progressive Meningiomas
This phase II trial studies how well vismodegib, focal adhesion kinase (FAK) inhibitor GSK2256098, and capivasertib work in treating patients with meningioma that is growing, spreading, or getting worse (progressive). Vismodegib, FAK inhibitor GSK2256098, capivasertib, and abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
A071701 – Genetic Testing in Guiding Treatment for Patients With Brain Metastases
This phase II trial studies how well genetic testing works in guiding treatment for patients with solid tumors that have spread to the brain. Several genes have been found to be altered or mutated in brain metastases such as NTRK, ROS1, CDK or PI3K. Medications that target these genes such as abemaciclib, GDC-0084, and entrectinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Genetic testing may help doctors tailor treatment for each mutation.
Breast Cancer Clinical Trials

Breast: Treatment Trials

CCTG MA.39 – Regional Radiotherapy in Biomarker Low-Risk Node Positive and T3N0 Breast Cancer
The purpose of this study is to compare the effects on low risk breast cancer receiving usual care that includes regional radiation therapy, with receiving no regional radiation therapy. Researchers want to see if not giving this type of radiation treatment works as well at preventing breast cancer from coming back.
Colorectal Cancer Clinical Trials

Colorectal: Treatment Trials

EA2182 – Lower-Dose Chemoradiation in Treating Patients with Early-Stage Anal Cancer, the DECREASE Study
This phase II trial studies how well lower-dose chemotherapy plus radiation (chemoradiation) therapy works in comparison to standard-dose chemoradiation in treating patients with early-stage anal cancer. Drugs used in chemotherapy, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. This study may help doctors find out if lower-dose chemoradiation is as effective and has fewer side effects than standard-dose chemoradiation, which is the usual approach for treatment of this cancer type.

Colorectal: Symptom Management & Quality of Life

A221805 – Duloxetine to Prevent Oxaliplatin-Induced Chemotherapy-Induced Peripheral Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Phase II to Phase III Study
This phase II/III trial studies the best dose of duloxetine and how well it works in preventing pain, tingling, and numbness (peripheral neuropathy) caused by treatment with oxaliplatin in patients with stage II-III colorectal cancer. Duloxetine increases the amount of certain chemicals in the brain that help relieve depression and pain. Giving duloxetine in patients undergoing treatment with oxaliplatin for colorectal cancer may help prevent peripheral neuropathy.
Esophageal Cancer Clinical Trials

Esophageal: Treatment Trials

EA2174 – A Phase II/III Study of Peri-operative Nivolumab and Ipilimumab in Patients with Locoregional Esophageal and Gastroesophageal Junction Adenocarcinoma
This phase II/III trial studies the usefulness of treatment with nivolumab and ipilimumab in addition to standard of care chemotherapy and radiation therapy in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery. Immunotherapy with antibodies, such as nivolumab and ipilimumab, may remove the brake on the body's immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy and radiation therapy may reduce the tumor size and the amount of normal tissue that needs to be removed during surgery. A combined treatment with nivolumab and ipilimumab, chemotherapy, and radiation therapy might be more effective in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery.
Head and Neck Cancer Clinical Trials

Head and Neck: Treatment Trials

NRG-HN006 – Comparing Sentinel Lymph Node (SLN) Biopsy with Standard Neck Dissection for Patients with Early-Stage Oral Cavity Cancer
This phase II/III trial studies how well sentinel lymph node biopsy works and compares sentinel lymph node biopsy surgery to standard neck dissection as part of the treatment for early-stage oral cavity cancer. Sentinel lymph node biopsy surgery is a procedure that removes a smaller number of lymph nodes from your neck because it uses an imaging agent to see which lymph nodes are most likely to have cancer. Standard neck dissection, such as elective neck dissection, removes many of the lymph nodes in your neck. Using sentinel lymph node biopsy surgery may work better in treating patients with early-stage oral cavity cancer compared to standard elective neck dissection.
Kidney Cancer Clinical Trials

Kidney: Treatment Trials

A031704 – Immunotherapy with Nivolumab and Ipilimumab Followed by Nivolumab or Nivolumab with Cabozantinib for Patients with Advanced Kidney Cancer, The PDIGREE Study
This phase III trial compares the usual treatment (treatment with ipilimumab and nivolumab followed by nivolumab alone) to treatment with ipilimumab and nivolumab, followed by nivolumab with cabozantinib in patients with untreated renal cell carcinoma that has spread to other parts of the body. The addition of cabozantinib to the usual treatment may make it work better. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as cabozantinib, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known how well the combination of cabozantinib and nivolumab after initial treatment with ipilimumab and nivolumab works in treating patients with renal cell cancer that has spread to other parts of the body.
Lung Cancer Clinical Trials

Lung: Treatment Trials

LUNGMAP – Lung-MAP: A Master Screening Protocol for Previously-Treated Non-Small Cell Lung Cancer
This screening and multi-sub-study randomized phase II/III trial will establish a method for genomic screening of similar large cancer populations followed by assigning and accruing simultaneously to a multi-sub-study hybrid Master Protocol (Lung-MAP). The type of cancer trait (biomarker) will determine to which sub-study, within this protocol, a participant will be assigned to compare new targeted cancer therapy, designed to block the growth and spread of cancer, or combinations to standard of care therapy with the ultimate goal of being able to approve new targeted therapies in this setting. In addition, the protocol includes non-match sub-studies which will include all screened patients not eligible for any of the biomarker-driven sub-studies.
Lymphoma Clinical Trials

Lymphoma: Treatment Trials

EA4151 – Rituximab With or Without Stem Cell Transplant in Treating Patients With Minimal Residual Disease-Negative Mantle Cell Lymphoma in First Complete Remission
This randomized phase III trial studies rituximab after stem cell transplant and to see how well it works compared with rituximab alone in treating patients with in minimal residual disease-negative mantle cell lymphoma in first complete remission. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving chemotherapy before a stem cell transplant helps kill any cancer cells that are in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Giving rituximab with or without stem cell transplant may work better in treating patients with mantle cell lymphoma.
Prostate Cancer Clinical Trials

Prostate: Treatment Trials

NRG-GU009 – Two Studies for Patients with High Risk Prostate Cancer Testing Less Intense Treatment for Patients with a Low Gene Risk Score and Testing a More Intense Treatment for Patients with a High Gene Risk Score, The PREDICT-RT Trial
This phase III trial compares less intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in treating patients with high risk prostate cancer and low gene risk score. This trial also compares more intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in patients with high risk prostate cancer and high gene risk score. Apalutamide may help fight prostate cancer by blocking the use of androgen by the tumor cells. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Giving a shorter hormone therapy treatment may work the same at controlling prostate cancer compared to the usual 24 month hormone therapy treatment in patients with low gene risk score. Adding apalutamide to the usual treatment may increase the length of time without prostate cancer spreading as compared to the usual treatment in patients with high gene risk score.
NRG-GU010 – Two Studies for Patients with Unfavorable Intermediate Risk Prostate Cancer Testing Less Intense Treatment for Patients with a Low Gene Risk Score and Testing a More Intense Treatment for Patients with a Higher Gene Risk Score
This phase III trial uses the Decipher risk score to guide intensification (for higher Decipher gene risk) or de-intensification (for low Decipher gene risk) of treatment to better match therapies to an individual patient's cancer aggressiveness. The Decipher risk score evaluates a prostate cancer tumor for its potential for spreading. In patients with low risk scores, this trial compares radiation therapy alone to the usual treatment of radiation therapy and hormone therapy (androgen deprivation therapy). Radiation therapy uses high energy x-rays or particles to kill tumor cells and shrink tumors. Androgen deprivation therapy blocks the production or interferes with the action of male sex hormones such as testosterone, which plays a role in prostate cancer development. Giving radiation treatment alone may be the same as the usual approach in controlling the cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy. In patients with higher Decipher gene risk, this trial compares the addition of darolutamide to usual treatment radiation therapy and hormone therapy, to usual treatment. Darolutamide blocks the actions of the androgens (e.g. testosterone) in the tumor cells and in the body. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading.